Bachelor of Science (B.Sc.) Semester—III (C.B.S.) Examination

PHYSICS

(Sound Waves, Applied Acoustics, Ultrasonics And Power Supply)

Paper—I

Time: Three Hours] [Maximum Marks: 50

N.B.:— (1) **ALL** questions are compulsory.

(2) Draw neat diagrams wherever necessary.

EITHER

- 1. (A) Explain phase velocity and group velocity. Obtain the relation between them for dispersive and non-dispersive medium.
 - (B) (i) Obtain an expression for the velocity of transverse wave on a stretched string.
 - (ii) The linear density of a vibrating string is 1.3×10^{-4} kg/m. A transverse wave is propagating on the string and is described by equation $Y = 0.021 \sin(30t + x)$, where x and y are in meters and t is in seconds. Find out the tension of the string.

OR

- (C) What is the temperament in musical scale? Describe equally tempered musical scale. 2½
- (D) Explain the limit of human audibility with the help of suitable diagram. 2½
- (E) Describe the different characteristics of musical sound. 2½
- (F) Intensity level in a conversation is 70 dB above the threshold of 10⁻⁶ w/cm². Calculate the amplitude of vibration of air particles in the sound wave.

[velocity of sound in air = 350 m/s, density of air = 1.25 gm/liter, mean frequency = 500 Hz] $2\frac{1}{2}$

EITHER

- 2. (A) What are transducers? Explain with neat diagram the construction and working of moving coil loudspeaker.
 - (B) (i) Define reverberation time. Derive Sabine's formula for the reverberation time by Jaegar's method.

NXO—12072 1 (Contd.)

(ii) The volume of big hall is 1500 m² and reverberation period for it is 1.5 second. If total surface area of absorption of sound is 800 m². Calculate: (a) total absorbing power of all the surfaces of hall. 2 (b) the mean absorption coefficient. $2\frac{1}{2}$

OR (

- (C) What are the important requirements of a good auditorium?
- 21/2 (D) Explain how sound is recorded and reproduced from compact discs.
- 21/2 (E) Explain variable density method for the recording of sound on Cine film.
- (F) The reverberation time is found to be 1 sec. when a curtain cloth of 20m² is suspended at the center of the hall. If the dimensions of hall are $10 \times 8 \times 6$ m². Calculate the coefficients of absorption of curtain cloth. 21/2

EITHER

- 3. (A) What are Ultrasonic waves? Explain how it can be used as acoustic grating for the determination of wavelength and velocity of Ultrasonic waves in liquid.
 - What is piezoelectric effect? Explain with circuit diagram the piezoelectric method for the (B) (i) production of ultrasonic waves. 3
 - (ii) Calculate the thickness of quartz crystal which can generate a fundamental frequency of 5.5 MHz. (Y = 8×10^{11} dynes/cm² and $\rho = 2.65$ g/cm³). 2

OR

- (C) Describe the production of ultrasonic waves by magnetostriction method with suitable diagram. 21/2
- (D) What is meant by SONAR? Explain.
- (E) A Nickel rod of 10 cm length having a density 8.1 × 10³ kg/m³ and Young's modulus
- $82 \times 10^{10} \text{ N/m}^2$ is used in a magnetostriction oscillator. Find frequency of vibration of the rod. $2\frac{1}{2}$
- (F) Explain any two applications of ultrasonic waves in medical science. 21/2

EITHER

- 4. (A) Draw the circuit diagram of bridge rectifier. Explain its working with input-output waveforms.
 - Explain with circuit diagram the working of zener diode as a voltage regulator under the (B) (i) following two situations:
 - (a) Load regulation
 - (b) Line regulation.

3

21/2

NXO-12072 2 NKT/KS/17/5110 (ii) A 10 V zener diode along with a series resistance is connected across a 40 V supply. Calculate the minimum value of resistance required, if the maximum zener current is 50 mA.

2

 $2\frac{1}{2}$

OR

- (C) What are the main features of IC-LM 317 ? Draw a neat circuit diagram of an electronic voltage regulator using IC-LM 317.
- (D) What do you mean by ripple factor? Show that ripple factor for half wave rectifier is 1.21 %. $2\frac{1}{2}$
- (E) Describe the action of shunt capacitor filter with necessary diagram.
- (F) Two power supplies A and B are available in the market. The power supply A has no load and full load voltage of 20 V and 15 V respectively, whereas these values are 20 V and 19V for power supply B. Justify which power supply is better.
- 5. Solve any ten (1 mark each):
 - (i) Why tempered scale is used in keyed instruments?
 - (ii) Two sinusoidal waves $y_1 = 0.07 \cos (3t 4x) \text{ m}$ and $y_2 = 0.07 \cos (t 2x) \text{m}$ are superimposed. Calculate the group velocity.
 - (iii) State the conditions for formation of stationary waves in medium.
 - (iv) What is the main difference between a live room and dead room?
 - (v) How Echelon effect is eliminated?
 - (vi) Why is a speaker usually housed in a large box?
 - (vii) What is Y-cut piezoelectric crystals?
 - (viii) Find the velocity of longitudinal waves produced in a quartz crystal of thickness 1 mm if $Y = 8.516 \times 10^{11} \text{ dynes/cm}^2$ and density $\rho = 2.65 \text{ gm/cm}^3$.
 - (ix) Why is a rod of ferromagnetic material used in magnetostriction oscillator?
 - (x) Draw the circuit diagram of a half wave rectifier.
 - (xi) What is the use of bleeder resistor in filter circuits of a power supply?
 - (xii) If $I_{dc} = 0.27$ A and $R_{L} = 1000$ Ω calculate P_{dc} . 1×10

3

NXO-12072 835

NKT/KS/17/5110