Bachelor of Science (B.Sc.) Semester—IV (C.B.S.) Examination

ELECTRONICS (Analogue and Digital Techniques)

Paper—I

Time: Three Hours] [Maximum Marks: 50

- **N.B.**:— (1) **ALL** questions are compulsory and carry equal marks.
 - (2) Draw neat diagrams whenever necessary.

EITHER

1. (a) What is feedback? Explain positive and negative feedback. Give their applications. State and explain Barkhausen criterion for sustained oscillations.

OR

(b) Explain the working of phase shift oscillator with circuit diagram.

In a phase shift oscillator, the three RC sections are made up of R = 1 $k\Omega$ and C = 0.1 μ f. Calculate the frequency of oscillation at the output.

EITHER

2. (a) Draw a neat diagram of OP AMP as Astable multivibrator and explain its working. Calculate the frequency of output of an astable multivibrator having $R_1=35~k\Omega$, $R_2=30~k\Omega$, $R_2=50~k\Omega$, $C=0.01~\mu f$.

OR

(b) Explain the concept and need for sample and hold circuit. Why is a CMOS switch used in it?

EITHER

3. (a) Explain the working of binary weighted 4-bit DAC with suitable diagram.

State any three parameters of DAC.

7+3

OR

(b) Explain the working of R-2R ladder type DAC with suitable diagram.

For 4-bit R-2R ladder type DAC. Determine output voltage for input of 1101 (logic 0 corresponds to 0V and Logic 1 corresponds to 10V).

NXO—16168 1 (Contd.)

EITHER

4. (a) Draw the block diagram of Dual slope A/D converter and explain its working. State the advantages of Dual slope ADC.

7+3

OR

(b) Explain the working of flash type ADC with suitable diagram. State its advantages and disadvantages (any three).

5. Solve any **TEN**:

- (a) What is oscillator?
- (b) Give the formula for frequency of oscillation in Wein Bridge oscillator.
- (c) What is stability in oscillator?
- (d) What is Monostoble multivibrator?
- (e) State the use of instrumentation amplifier.
- (f) State the application of a stable multivibrator.
- (g) Define settling time.
- (h) What is resolution?
- (i) State any two applications of DAC.
- (j) What is the need of ADC?
- (k) State two advantages of successive approximation type ADC.
- (l) State what is sampling theorem?

 1×10

NXO-16168

2 NKT/KS/17/5156